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Abstract

Recent theoretical progress using multiscale asymptotic analysis has revealed various possible regimes

of stratified turbulence. Notably, buoyancy transport can either be dominated by advection or di↵usion,

depending on the e↵ective Péclet number of the flow. Two types of asymptotic models have been

proposed, which yield measurably di↵erent predictions for the characteristic vertical velocity and length

scale of the turbulent eddies in both di↵usive and non-di↵usive regimes. The first, termed a ‘single-scale

model’, is designed to describe flow structures having large horizontal and small vertical scales, while

the second, termed a ‘multiscale model’, additionally incorporates flow features with small horizontal

scales, and reduces to the single-scale model in their absence. By comparing predicted vertical velocity

scaling laws with direct numerical simulation data, we show that the multiscale model correctly captures

the properties of strongly stratified turbulence within spatiotemporally-intermittent turbulent patches.

Meanwhile its single-scale reduction accurately describes the more orderly layer-like flow outside those

patches.

1 Introduction

Owing to the associated enhanced rates of irreversible scalar mixing, stratified turbulence is a critical process
in the Earth’s atmosphere and oceans, impacting both weather and climate, and in the interiors of stars and
gaseous planets, a↵ecting their long-term evolution. Assuming that the buoyancy of the fluid is controlled
by a single scalar field, which could be temperature or the concentration of a single solute, the dimensionless
Boussinesq equations governing the fluid motions are

@u

@t
+ u ·ru = �rp+

b

Fr2
ez +

1

Re
r2u+ F h, (1a)

@b

@t
+ u ·rb+ w =

1

Pe
r2

b, (1b)

r · u = 0, (1c)

where u = (u, v, w) is the velocity field expressed in units of U (where U is a characteristic horizontal velocity
of the large-scale flow), t is the time variable in units of L/U (where L is a characteristic large horizontal
scale of the flow), p is the pressure fluctuation away from hydrostatic equilibrium in units of ⇢mU

2 (where ⇢m
is the mean density of the fluid), and b is the deviation of the buoyancy field away from a linearly stratified
background, expressed in units of LN2 (where N is the buoyancy frequency of the stable stratification). The
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flow is assumed to be driven by a non-dimensional divergence-free horizontal force F h, which only varies on
large spatial scales and long time scales. The unit vector ez points in the direction opposite to gravity.

The usual dimensionless governing parameters of the flow emerge; namely, the Reynolds number Re =
UL/⌫, the Péclet number Pe = UL/ and the Froude number Fr = U/NL, where ⌫ is the kinematic
viscosity, and  is the buoyancy di↵usivity, while the Prandtl number, Pr = ⌫/ = Pe/Re is a property of
the fluid. Typically, Pr ⇠ O(1) in air and water, but is very small in astrophysical fluids (of order 10�2 in
degenerate plasmas and liquid metals, and much smaller in non-degenerate stellar plasmas, see Lignières,
2020).

As the stratification increases (Fr ! 0), vertical motions are increasingly suppressed and restricted to
small characteristic vertical scales lz = O(↵L), where the emergent aspect-ratio ↵ is an increasing function of
Fr but could also depend on Re and Pe. In the limit (↵, F r) ! 0, asymptotic analysis has successfully been
used to derive reduced equations for stratified turbulence and to gain insight into its properties. Brethouwer
et al. (2007), following Billant and Chomaz (2001), proposed an asymptotic reduction in which the vertical
coordinate z is rescaled as ⇣ = z/↵ (with ↵ ⌧ 1), while the horizontal coordinates xh = (x, y) remain of
order unity. Accordingly, all dependent variables q are expressed as q(xh, ⇣, t;↵). As in Klein (2010), we refer
to this type of model, which is designed to capture the essence of a scale-specific process, as a single-scale
asymptotic (SSA) model. This vertical rescaling, when used in (1), reveals the importance of the emergent
buoyancy Reynolds and Péclet numbers, defined as

Reb = ↵
2
Re and Peb = ↵

2
Pe, (2)

respectively. Brethouwer et al. (2007) showed that balancing the mass continuity equation in the limit ↵ ! 0
requires w = O(↵). When Reb and Peb are at least O(1), dominant balance in the buoyancy equation implies
b = O(↵). Finally, the vertical component of the momentum equation reduces to hydrostatic equilibrium
when ↵ ! 0, yielding ↵ = Fr, as first argued in the inviscid and non-di↵usive case by Billant and Chomaz
(2001).

More recently, Shah et al. (2024) noted that in the limit of Pr ⌧ 1, it is possible to have a regime in
which Peb ⌧ 1  Reb. They demonstrated that in this case, the SSA model and corresponding asymptotic
expansion reveal instead that w = O(↵) and b = O(↵Peb), with ↵ = (Fr

2
/Pe)1/4 (see also Lignières, 2020;

Skoutnev, 2023).
Crucial to the SSA theory is the notion that every component of the flow is strongly anisotropic, with large

horizontal scales and a small vertical scale. In this model, therefore, the vertical fluid motions are primarily
driven by the divergence of the horizontal flow, as illustrated schematically in figure 1. Chini et al. (2022),
however, noted that the SSA theory ignores the possibility that isotropic motions with small horizontal
scales may also exist and, in fact, are commonly seen in numerical simulations of stratified turbulence at
su�ciently large Reb (cf. Ma�oli and Davidson, 2016; Cope et al., 2020; Garaud, 2020). They proposed a
new asymptotic reduction that explicitly incorporates two horizontal scales and two time scales, such that
all dependent variables are expressed as

q(xf , xs, ⇣, tf , ts;↵), where xs = x, xf = x/↵, ts = t, tf = t/↵, (3)

and where the subscripts s and f are used to denote slow and fast scales, respectively. Again following Klein
(2010), we refer to the resulting reduced equations as a multiscale asymptotic (MSA) model. Chini et al.
(2022) showed that these definitions imply that the large-scale motions remain strongly anisotropic with an
aspect ratio ↵, as in the SSA model, but can coexist with isotropic small-scale motions that evolve on the
fast time scale tf , and vary on the small vertical coordinate ⇣ and the ‘fast’ horizontal coordinate xf . These
small-scale motions are self-consistently driven by an instability of the local vertical shear emergent from
the larger-scale horizontal flow structures (see figure 1), and are gradually stabilized as the stratification
increases at fixed Re. They essentially disappear beyond a certain threshold, at which point the MSA model
naturally recovers the SSA model and its predicted scalings. For the sake of clarity, however, we refer in
what follows to the SSA model and its scalings whenever small horizontal scales are ignored, and to the
MSA model and its scalings whenever they are taken into account, even though the MSA model does in fact
naturally cover both cases.

In the asymptotic limit where Reb � O(1) and Peb � O(1), Chini et al. (2022) found that w = O(↵1/2),
b = O(↵) and ↵ = Fr when ↵ ! 0. Their scaling prediction for w thus deviates substantially from that of
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Model type Non-diffusive regime: !"! ≥ $(1) Diffusive regime: !"! ≪ 1
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(Lignières 2020, Skoutnev 2023)
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Chini et al. 2022 

(Riley & Lindborg 2012)
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-~ ./'/12 (/+

Shah et al. 2024 

(Cope et al. 2020)

SSA:

MSA:

Figure 1: Illustrations and summary of the SSA and MSA model predictions for w and lz in both the non-
di↵usive and di↵usive regimes. Horizontal eddies are shown in red, and vertical eddies are shown in blue.

Brethouwer et al. (2007), but recovers that of Riley and Lindborg (2012) albeit using di↵erent arguments
(for details see Shah et al., 2024). That scaling has been tentatively validated by Ma�oli and Davidson
(2016) in run-down direct numerical simulations (DNS) of stratified turbulence.

Extending the MSA theory to the low Pr case, Shah et al. (2024) recovered the results of Chini et al.
(2022) when Peb � O(1). They also found that ↵ = Fr and w = O(↵1/2) both continue to hold in an
‘intermediate’ regime where O(↵)  Peb ⌧ 1. However, when Peb ⌧ ↵, a new fully di↵usive regime
emerges in which w = O(↵1/2), b = O(Peb↵

1/2) and ↵ = (Fr
2
/Pe)1/3. As for the Pr = O(1) scenario,

the scaling predictions of the MSA theory di↵er substantially from those emerging from the low Peb limit
of the SSA theory (Shah et al., 2024) but recover them when small scales are absent. The various theories
and their predicted scalings for Reb � O(1), with Peb � O(↵) or Peb ⌧ ↵, respectively, are summarized in
figure 1.

Therefore, an interesting question is whether evidence for these scaling laws can be found in DNS data.
Recently, two series of DNS were presented by Cope et al. (2020) and Garaud (2020), respectively, which
solved equations (1) with F h = sin(y)ex (where ex is a unit vector in the streamwise, i.e. x, direction; see §2
for further details). In their Pe < 1 simulations (where by construction Peb ⌧ ↵), Cope et al. (2020) found
that the vertical length scale of the turbulent motions scales as ↵ = (Fr

2
/Pe)1/3, validating the predictions

of Shah et al. (2024) in that limit. This scaling, however, was not as clearly evident in the high Pe but
low Peb data of Garaud (2020). One potential explanation is that Reb is relatively low in these simulations
(which have Pr = 0.1, so Reb = 10Peb), implying viscous e↵ects are not necessarily negligible. In the limit
of high Peb, Garaud (2020) was unable to find evidence for the ↵ = Fr, w = O(Fr) scaling of Brethouwer
et al. (2007) and was unaware at the time of the scaling w = O(Fr

1/2) obtained by Chini et al. (2022),
proposing instead on empirical grounds that w / ↵ = Fr

2/3 provides the best fit to the data. The apparent
discrepancy between Garaud’s data and previous models therefore prompts us to analyze some new DNS
results and to revisit the available data from Cope et al. (2020) and Garaud (2020) in the light of the MSA
models of stratified turbulence recently derived by Chini et al. (2022) and Shah et al. (2024).

2 Comparison of theory with DNS

The SSA and MSA theories di↵er primarily in their predictions for the characteristic vertical length scale
of the flow (or equivalently, ↵) and for the characteristic vertical velocity. We are therefore interested in
comparing these predictions to the data. In practice, however, the characteristic vertical length scale is a
relatively di�cult quantity to extract from the DNS, as there is no unique and universally-accepted definition.
Consequently, we focus solely on comparing the theoretical predictions for the characteristic vertical velocity
of the flow to the root-mean-square (rms) of the w field because that quantity is both well-defined and easy
to compute.

In what follows, we extend and re-analyze the datasets presented in Cope et al. (2020) and Garaud
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(2020). Both studies performed DNS of the set of non-dimensional equations (1) with F h = sin(y)ex in a
triply-periodic domain of size 4⇡ ⇥ 2⇡ ⇥ 2⇡ using the PADDI code (Traxler et al., 2011). We focus on their
highest Reynolds number simulations, which were performed for Re = 600. Note that in this paper, Cope
et al. (2020) and Garaud (2020), Re is defined using the inverse wavenumber of the forcing, and thus is a
factor of 2⇡ smaller than that of simulations which use the box size as the unit of length instead. Cope et al.
(2020) presented a range of DNS for Pe  0.1 and low Fr (using the parameter B = Fr

�2 to characterize
the stratification). They also ran a few simulations in the asymptotically low Pe regime (Lignières, 1999),
called the LPN regime hereafter, where the buoyancy equation is replaced by w = Pe

�1r2
b. Garaud (2020)

presented DNS with Re = 600, Pe = 60 (i.e. Pr = 0.1) and low Fr. Each simulation was integrated until a
statistically-stationary state was reached, lasting at least 100 time units. In some cases, we had to further
extend the original DNS from Cope et al. (2020) or Garaud (2020) to have a su�ciently long stationary time

series. The quantity wrms = hw2i1/2t , where h·it denotes a volume and time average, was then measured in
that statistically stationary state using the extended data.

To complement this dataset, we have run additional simulations at Re = 1000, Pe = 100. These DNS
have twice the spatial resolution of those of Cope et al. (2020) and Garaud (2020) and, thus, have only been
integrated for up to 50 time units in the statistically stationary regime. In addition, the full fields are too
large to be saved regularly, so we have saved two-dimensional slices through the data in the (x, y), (y, z) and
(x, z) planes. These simulations are only used for visualizations and to assess the influence of viscosity by
comparison with the Re = 600 results.

We compare the wrms data and the various theories in the top row of figure 2. The left panel shows wrms

as a function of Fr
�1, measured for the Pe = 60, Re = 600 runs (green symbols), and for the Pe = 100,

Re = 1000 runs (orange symbols). Note that Pr = 0.1 in both cases. We refer to these simulations as
‘non-di↵usive’ runs because Pe is large. The fact that the measured values of wrms are identical for the two
sets of simulations at di↵erent Re demonstrates that viscous e↵ects are negligible, at least for Fr

�1  20.
The right panel shows the results of the suite of experiments at Pe = 0.1, Re = 600 (purple symbols),
for which Pr = 0.1/600. We refer to these simulations as ‘di↵usive’ runs, because Pe is small. Note that
some of these runs were actually integrated using the LPN regime equations instead (square symbols). In
that case, the relevant input parameters are Re and � = Pe/Fr

2 (= BPe in the notation of Cope et al.,
2020). To obtain the corresponding value of Fr for a given �, simply note that Fr =

p
Pe/� for a given

Pe. Illustrated as well in the same plots are the various theoretical predictions for the vertical velocity: the
red line in each panel corresponds to the SSA theory, while the blue line corresponds to the MSA theory.

The bottom row of figure 2 shows for comparison the expected regime diagrams for the corresponding
values of Pr in each case, based on the asymptotic theory of Shah et al. (2024). The coloured horizontal
arrows show the transect taken through parameter space for each series of DNS shown in the top row. The
background colours show the expected regime: isotropic motions with ↵ ' 1 (grey), non-di↵usive anisotropic
turbulence (green), intermediate regime (yellow), di↵usive anisotropic turbulence (violet) and viscous regime
(white). The same background colours in the top row show the expected regime transitions as a function
of Fr

�1 at the value of Pe corresponding to the transect taken. We note that while Shah et al. (2024)
distinguished the non-di↵usive and intermediate regimes, these have the same predicted scalings for ↵ and
w; in any case, the intermediate regime does not span a large region of parameter space at Pr = 0.1 and
would be di�cult to identify even if the scaling laws di↵ered.

Examination of the top panels confirms that none of the theories applies when the stratification is weak
so the flow is isotropic on all scales (↵ ' 1, grey region), or in the viscous regime (white region), where
Reb  1. This is, of course, as expected. However, we also see that neither the SSA nor the MSA model
predictions fit the data in the entire region where they are supposedly valid (i.e. the green/yellow regions in
the non-di↵usive case, and the purple region in the di↵usive case). Instead, we find that the MSA predictions
appear to be better at weaker stratifications (higher Fr) while the SSA predictions appear to be better at
higher stratification (lower Fr), when Re is fixed.

3 The e↵ects of intermittency

To gain insight into the applicability of the predicted scalings, we examine the actual flow field more closely.
Figure 3 shows snapshots of u and w in two di↵erent high-resolution DNS at Pe = 100 and Re = 1000. The
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Figure 2: Top row: Comparison between the model predictions and the data for non-di↵usive simulations
with Pr = 0.1 and two di↵erent values of Re (left) and di↵usive simulations with Re = 600, Pe = 0.1 (right).
Symbols show wrms extracted from the DNS and errorbars show the standard deviation of its temporal
variability. Squares on the right panel denote LPN simulations (see main text for details). The blue and red
lines in each panel show the MSA and SSA scaling predictions, respectively. Bottom row: Regime diagrams
for stratified turbulence at Pr = 0.1 (left) and Pr = 0.1/600 ' 0.00017 (right), adapted from Shah et al.
(2024). Grey regions support isotropic motions. White regions are viscously controlled (Reb  1). Green
regions support non-di↵usive anisotropic stratified turbulence (Peb � O(1)), and purple regions support
di↵usive anisotropic stratified turbulence (Peb ⌧ ↵). The yellow regions are in the ‘intermediate’ regime
of Shah et al. (2024) (O(↵)  Peb ⌧ 1). Horizontal arrows show the transects through the regimes
corresponding to the panels above.
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Figure 3: DNS snapshots of u (top row) and w (bottom row) in the y = 0 plane for Re = 1000, Pe = 100.
The left column shows a more weakly stratified simulation with Fr = 30�1/2 ' 0.18 and the right column
shows a more strongly stratified simulation with Fr = 300�1/2 ' 0.058. Note the spatially intermittent
nature of the turbulence in the latter.

left panels show a more weakly stratified case with Fr ' 0.18 and the right panels show a more strongly
stratified case with Fr ' 0.058. It is clear that while the Fr ' 0.18 case is fully turbulent, the more strongly
stratified case is not, but exhibits instead spatial intermittency in as much as the turbulence is localized to
small ‘patches’ (see e.g. the regions of high |w| in the bottom right panel). Similar findings were reported
by Cope et al. (2020) in their low Pe simulations in the regime that they named ‘stratified intermittent’ (see
their figure 6).

These snapshots demonstrate two very important aspects of strongly stratified turbulence that have direct
implications for asymptotic analyses. First, they illustrate the coexistence of large and small horizontal
scales, with u dominated by large scales with subdominant small scales, and w dominated by small scales
with subdominant large scales (cf. Riley and Lindborg, 2012). This ordering is a cornerstone of the MSA
theories of Chini et al. (2022) and Shah et al. (2024). Secondly, they show in the more strongly stratified case
that these small horizontal scales are only dominant within the turbulent patches, and essentially disappear
outside of these patches. As such, the distinct MSA model scalings are only expected to apply within the
turbulent patches. In the more orderly layer-like flow outside of those patches, the SSA scalings—which
coincide with the MSA model predictions in regions where small scales are not excited—should hold.

To verify this interpretation quantitatively, we sought to identify a reliable diagnostic for the turbulent
patches, i.e. regions where the flow exhibits small horizontal scales. It is common to use the enstrophy
|!|2 as a diagnostic for turbulence, where ! = r ⇥ u is the flow vorticity. Indeed, the turbulent cascade
to small scales implies that enstrophy must be large within the patches. However, enstrophy turns out
to be an inappropriate diagnostic for our purpose because it can also be large in the layer-like regions of
strong vertical shear outside of the turbulent patches, such as the ones described by the SSA model. This
fact is illustrated in figure 4(a), which shows the enstrophy field in a particular snapshot of a strongly
stratified simulation, and can be understood as follows. According to Chini et al. (2022) and Shah et al.
(2024), u = ū + u0 where ū can be thought of as the large-scale anisotropic component of the flow, which
varies on the O(1) horizontal scales and O(↵) vertical scale, as in the SSA model. Meanwhile u0 can be
thought of as the small-scale isotropic and turbulent component of the flow, which varies on O(↵) scales in
all directions, as in the MSA model. Furthermore, these authors show that ū ⇠ v̄ ⇠ O(1), while w̄ ⇠ O(↵),
and u

0 ⇠ v
0 ⇠ w

0 ⇠ O(↵1/2). Accordingly, we find that the horizontal vorticity components are dominated
by the contribution from ū, namely !x ⇠ !̄x ⇠ !y ⇠ !̄y ⇠ O(Fr

�1), while the vertical vorticity component
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! ! ""!

Figure 4: Snapshots of enstrophy (left) and vertical vorticity squared (right) from a simulation at Re = 600,
Pe = 60, and Fr = 0.05. The latter is a better diagnostic of the turbulent patches.

is dominated by the contributions from u0, with !z ⇠ !
0
z ⇠ O(Fr

�1/2). As a result, we argue that !
2
z is

a more reliable diagnostic of the small-scale turbulence than the enstrophy. This assertion is confirmed in
figure 4(b), which shows !

2
z for the same snapshot depicted in figure 4(a). We see that the regions of high

!
2
z only highlight the turbulent patches of the flow.
In what follows, we therefore define the following quantities:

w
turb
rms =

hw2
!
2
zi

1/2
t

h!2
zi

1/2
t

, and w
noturb
rms =

hw2
!
�2
z i1/2t

h!�2
z i1/2t

. (4)

The first can essentially be viewed as the root-mean-square of w taken over the turbulent patches, where
the distinct MSA scalings should apply. The second can be viewed as the rms of w taken everywhere other

than the turbulent patches, where the SSA scalings should apply. Note that the computation of wturb
rms and

w
noturb
rms requires integrals of w2, !2

z , and their product or ratio over the entire volume, which was not one
of the simulation diagnostics originally saved. As such, we are unable to extract these quantities from the
Re = 1000 simulations. However, we can compute them from the full-data snapshots regularly saved in
the Re = 600 simulations in both high and low Pe datasets (of which there are usually between 50 and
100 depending on the simulation). The variance is naturally larger than for the wrms data, owing to the
intermittency of the turbulence.

We present the results in figure 5, with the non-di↵usive Re = 600, P e = 60 simulations on the left
and the di↵usive Re = 600, P e = 0.1 simulations on the right. The background colours are the same as
in figure 2. The wrms data from figure 2 is again shown in green and purple symbols. We plot the w

turb
rms

data using blue symbols in both cases, and the MSA scalings for turbulent regions using a blue line for
comparison. Similarly, we plot the wnoturb

rms data using red symbols and the SSA scalings using a red line. We
see, quite clearly, that each theory fits the data in its respective region of validity—the distinct MSA scalings
being valid in the turbulent patches, and the SSA scalings only being valid outside of the turbulent patches.
This shows that the transition observed in figure 2, from simulations that appear to satisfy the turbulent
MSA scalings better at low stratification to simulations that appear to fit the SSA scalings better at high
stratification, primarily is a consequence of the decrease in the volumetric fraction of the domain occupied
by the turbulent patches when Fr

�1 increases.
As the stratification continues to increase, the buoyancy Reynolds number Reb = ↵

2
Re eventually de-

creases below a critical value Reb,crit = O(1), where viscous e↵ects become dominant. Assuming Reb,crit = 1,
we show this transition in figure 2 as the line separating the coloured area from the white region, for the
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Figure 5: Comparison between models and data for the characteristic vertical velocity at Re = 600, Pe = 60
(left) and at Re = 600, Pe = 0.1 (right). Green and purple symbols show wrms in the left and right panels,
respectively. In both panels, blue symbols show w

turb
rms and should be compared with the turbulent MSA

scalings (blue lines), while red symbols show w
noturb
rms and should be compared with the corresponding SSA

scalings (red lines).

MSA model. In the non-di↵usive case (left panel), ↵ = Fr, so Reb = 1 is equivalent to Pe = PrFr
�2,

which is the edge of the yellow region. We see that the data are consistent with this prediction: beyond the
viscous transition, wrms rapidly drops to very low values consistent with a viscously-dominated flow. For the
di↵usive case (right panel), ↵ = (Fr

2
/Pe)1/3 in the MSA model so Reb = 1 is equivalent to Pe = Pr

3
Fr

�4,
which corresponds to the edge of the purple region. We see that the e↵ects of viscosity appear to become
important at slightly weaker stratification than predicted assuming Reb,crit = 1, but plausibly attribute this
discrepancy to missing O(1) constants in the estimates for ↵ and/or Reb,crit.

4 Conclusion

In this paper, we have presented a detailed comparison of DNS data with various theoretical predictions for
the characteristic vertical velocity of fluid motions in forced stratified turbulence. In particular, we have
studied both moderate and low Prandtl number regimes, resulting in a wide range of Péclet numbers at fixed
Reynolds number. When buoyancy di↵usion is negligible, our results notably provide compelling evidence
for the w / Fr

1/2 scaling law for stratified turbulence first proposed by Riley and Lindborg (2012) using
heuristic arguments and rigorously derived by Chini et al. (2022) using multiscale asymptotic analysis. In the
latter investigation, this scaling law is intrinsically tied to the existence of small-scale isotropic flow motions
driven by the emergent vertical shear between larger-scale primarily horizontal eddies, as corroborated by the
results from the DNS presented here. The vertical shear instability is gradually stabilized as the buoyancy
Reynolds number decreases towards a critical value of order unity, and the small-scale isotropic component of
the turbulence becomes spatio-temporally intermittent rather than domain filling. Outside of the turbulent
patches, small horizontal scales disappear, and we find that w / Fr instead, consistent with the model
of Billant and Chomaz (2001) and Brethouwer et al. (2007). In this intermittent regime, therefore, the
rms vertical velocity of the flow computed from an average over the whole domain di↵ers from either of
these scaling laws, and additionally depends on the volume filling factor of the small-scale turbulence,
whose dependence on stratification will be the subject of future work. This intermittency also explains
the incorrect conclusion reached by Garaud (2020) regarding the possible existence of another regime of
stratified turbulence where w / Fr

2/3. In hindsight, we understand her empirically-inferred scaling simply
as a consequence of the decrease in the volume filled by turbulent patches with increasing stratification at
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fixed Re.
At low Pr, Shah et al. (2024) revised the predictions of Brethouwer et al. (2007) and Chini et al. (2022)

to account for the e↵ects of buoyancy di↵usion. They showed that the presence of small isotropic motions
implies that w / (Fr

2
/Pe)1/6, consistent with an early model and DNS data by Cope et al. (2020), while

in their absence w / (Fr
2
/Pe)1/4, consistent with predictions from Lignières (2020) and Skoutnev (2023).

Revisiting the very low Pr DNS of Cope et al. (2020) in this new light, we have confirmed both scaling laws
within and outside of the turbulent patches, respectively. Finally, the models of Chini et al. (2022) and Shah
et al. (2024) also predict where in parameter space viscous e↵ects become important. We have confirmed
these predictions, too, with our DNS data.

In summary, this investigation demonstrates that the combination of rigorous multiscale analysis (Chini
et al., 2022; Shah et al., 2024) with idealized DNS (Cope et al., 2020; Garaud, 2020, and new simulations
presented here) can be a powerful tool to identify and validate scaling laws for stratified turbulence across
di↵erent regions of parameter space. In future work, we will incorporate the e↵ects of rotation and magnetic
fields, which must be taken into account for a more realistic description of stratified turbulence in geophysical
and astrophysical settings.
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